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SUMMARY 

A method based on backward finite differencing in time and a least-squares finite element scheme for first- 
order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. 
The scheme minimizes the L2-norm of the residual within each time step. The method naturally generates 
numerical dissipation proportional to the time step size. An implicit method employing linear elements has 
been implemented and proves robust. For high-order elements, computed solutions based on the L2-method 
may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which 
minimizes the weighted If'-norm of the residual is proposed and leads to a successful scheme with high- 
degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical 
results for two-dimensional problems are given to demonstrate the shock resolution of the methods and 
compare different approaches. 
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1. INTRODUCTION 

Finite element methods are well suited to practical problems posed on complicated domains and 
are now extensively applied in solid mechanics, heat transfer, fluid flow and other areas of applied 
science. The earlier difficulties encountered in extending the methodology beyond elliptic bound- 
ary value problems and to convection dominated flows have been substantially resolved. In 
particular, the success of upwind finite differencing and related artificial dissipation methods 
motivated studies of analogous upwind finite element methods; similarly, the idea of the 
Lax-Wendroff scheme in finite differencing has motivated studies of Taylor-Galerkin finite 
element algorithms. For example, the streamline upwind Petrov-Galerkin method,' the 
Taylor-Galerkin the Taylor-Galerkin method with flux-corrected transport 
(FCT),5-7 block relaxation via Godunov's method' and the characteristic Galerkin method9 
have been developed and applied with considerable success to these problems. 

In previous studies''-' we described a least-squares finite element method (LSFEM) for 
hyperbolic problems. Here this approach is extended to the Euler equations of compressible gas 
dynamics. We begin by considering the backward implicit time-differenced formulation. The 
least-squares method is then employed to minimize the residual in the L2-norm. This approach 
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yields a weak statement similar to the streamline upwind Petrov-Galerkin scheme. The associ- 
ated artificial viscosity appears ‘naturally’ and is dependent on the time step At, but without other 
‘free’ parameters. For linear problems the implicit method is unconditionally stable at all Courant 
numbers. 

The application of this L2-method with linear elements to the compressible Euler equations 
produces non-oscillatory shock profiles as long as the time step At is large enough (Courant 
numbers in the range 1&50). While this, evidently, is not appropriate for time-accurate solutions, 
it is a valid approach for the steady shocked flow computation. We also investigate the possibility 
of utilizing high-degree bases. For high-order elements and moderate time steps the L2-method 
may lead to a solution with non-physical oscillations. In order to overcome this difficulty, we 
construct a new least-squares variational method based on minimizing the residual in an 
approximate HI-norm. The effect of the additional term is to introduce a further dissipation 
proportional to the solution gradient and thereby control non-linear instabilities associated with 
shock formation. This strategy can be interpreted as a multi-objective programming technique 
which minimizes the residual as well as the derivatives of the residual. The application of the 
method to one-dimensional unsteady Euler equations is discussed in Jiang and Carey.” One aim 
of the present paper is to demonstrate its applicability for two-dimensional problems and to 
develop a successful method using higher-degree elements. For comparison purposes we also 
present a similar least-squares finite element method based on a conservative formulation. 

In Section 2 we give a description of the L2-method and explain the mechanism of numerical 
dissipation generated by the method. The HI-method is discussed in Section 3. In Section 4 we 
describe the conservative formulation. Numerical examples are given to illustrate the shock- 
capturing capability of the method. 

2. 12-METHOD 

2.1. Formulation 

We begin by describing the LSFEM for the two-dimensional unsteady compressible Euler 
equations in non-conservative form as a first-order system: 

au dU au 
- + A 1 - + A 2 - = O  i n R x ( O , T ) ,  
at ax dY 

M u  = g on rg x (0, T),  (2) 

(3) u = uo 

where uT = ( p ,  u, 0, p ) ,  M is a boundary operator, g is a given vector-valued function, Tg is that 
part of the boundary r where essential boundary conditions are applied, R is the spatial domain 
of the problem, t is time and 

in R for t = 0, 

Here p is the density, (u, u )  are the velocity components, p is the pressure and y is the specific heat 
ratio. 
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For a given time step At = t"" - t" we linearize the problem by setting A; = A,($), 
A; = A2(u"). Backward differencing leads to the implicit time-differenced problem 

au"+l dun+' 
ax dY 

u"" - u" + AtA; __ i- AtA;- = 0. 

Introducing Au = un+' - U" we rewrite equation (4) as 

aAu 
Au i- At.4;- -t ax 

(4) 

The basic least-squares method for the system ( 5 )  amounts to minimizing the L2-norm of the 
residual R for admissible Au in (5); i.e. minimizing the objective functional 

Qo = In RTR dxdy, (6) 

with 

Taking variations with respect to Au and setting the test function v = ~ A u ,  6Q0 = 0 leads to the 
least-squares weak statement: find AUES = {H'(R))4; M(Au) = 0 on rg}, where H'(R) denotes 
the usual Hilbert space, such that 

a A U  a A U  

ax 2ay AU + AtA; __ + AtA" 

+ A t  dxdy=O ' ~ v E S .  (71 

Next we introduce a finite element discretization. Let N ,  be the number of nodes for an element 
and $ j  denote the element basis functions. The approximation and the test function are 

where A@, u, v,  p): are the nodal values at the j th node and E is the 4 x 4 identity matrix. 
Substituting Au,, v h  for Au, v in (7) and evaluating the integrals, we have 

K(AU) = F, (9) 
where AU is the global nodal vector. The global matrix K and the global vector F are assembled 
from the following submatrices and subvectors respectively: 
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where 

Lvi = viE + Atvi,,Al + Atyi , , ,Al .  (12) 

We note that the stiffness matrix K is symmetric, positive and definite. This is an important 
feature of the least-squares method. Only the lower half matrix need be generated and stored for 
use in a Cholesky LDLT factorization. 

Remarks: 1. The method presented here is first-order accurate in time. Crank-Nicolson finite 
differencing in the temporal domain can be introduced to get second-order accuracy (in time). 
However, for one-dimensional Euler equations the second-order scheme leads to oscillations at 
shocks (e.g. in computing Sod’s problem”) and we may anticipate a similar difficulty for two- 
dimensional problems. 

2. In the development above and in the subsequent calculations we use the transient formula- 
tion. We remark also that when the steady state is reached by the time-marching procedure, the 
corresponding weak statement becomes 

dxdy=O. (13) 

The first term in (1 3) corresponds to the standard Galerkin weak statement. The second term is 
positive and acts as a numerical dissipation to stabilize the solution, smoothing out any 
oscillations and discontinuities. (For further discussion on the relationship to the 
Petrov-Galerkin approach, see Reference 12.) 

2.2. Numerical results 

We now demonstrate some features of the LSFEM using three numerical examples. 

Problem 1 .  A standard test problem corresponding to the reflection of a shock from a wall is 
depicted in Figure 1. On the upper boundary of the flow domain p = 1-7, u = 2.6185, 
v = -0.5082, p = 1.5282 and on the upstream boundary p = 1.0, u = 2.9, u = 0.0, p = 0.7143, so 
a shock emanates from the upper left corner. This shock is reflected at the lower wall where u = 0 
and the downstream boundary conditions remain free for outflow. The initial data were 
prescribed as constant at  values given on the upper boundary and the specific heat ratio is y = 1.4. 
In the calculation a uniform 60 x 20 mesh of bilinear elements was used. The solution is 
integrated with a time step At = 0333 33 until an essentially steady state is obtained in 12 time 
steps. Pressure contours for this steady solution are given in Figure 1. Qualitatively, it is seen that 
the flow physics is correctly modelled. Although the shock is somewhat smeared, the results are 
quite good, oscillations being absent, and the calculation is efficient since the result is achieved in 
very few steps and the system is symmetric as noted previously. 

Problem 2. The second problem is a Mach 3 flow (with y = 1.4) over a 20” ramp. The gas enters 
with uniform flow conditions through the left boundary of the domain and an oblique shock 
develops at the root of the ramp. The mesh contained 824 bilinear elements and the computed 
pressure contours are illustrated in Figure 2. In the calculation the initial data were prescribed as 
constant at the value given on the left boundary and the time step was At = 0.333 33. The steady 
state was obtained in 16 time steps. The present results compare favourably with other 
calculations reported in the cited references on comparable grids. 
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Figure I .  Pressure contours for the wave reflection problem (L'-method, 20 x 60 bilinear elements, At = 0.333 33, 12 time 
steps, 2 x 2 Gaussian quadrature) 

Figure 2. Finite element mesh and pressure contours for the Mach 3 flow over a 20" ramp (Lz-method, 824 bilinear 
elements, At = 0.333 33, 16 time steps) 

Problem 3. We also considered a cylinder in a supersonic flow with Mach number M ,  = 2, 
y = 1.40. The mesh of 800 bilinear elements and the computed pressure contours are given in 
Figure 3. In the calculation the initial data were again prescribed as constant at the value of the 
incoming flow. The steady state was obtained in 36 time steps with At = 0.1. 

We note that in all three numerical examples this least-squares finite element method with 
bilinear elements produces non-oscillatory shock profiles and the results compare favourably 
with those in the literature based on other methods. 
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Figure 3. Finite element mesh and pressure contours for the Mach 2 flow past a circular cylinder (L2-method, 800 bilinear 
elements, At = 01, 36 time steps) 

3. H'-METHOD 

3.1. Formulation 

Numerical experiments show that as long as the time step At is large enough (the correspond- 
ing Courant number is in the approximate range 10-50), the Lz-method with linear elements gives 
non-oscillatory shock profiles in the computed steady state. However, for high-order elements, 
computed solutions based on this method may have oscillations. Moreover, the steepening shock 
may lead to non-linear instabilities in the calculation. This difficulty is common to present 
numerical schemes for this type of problem and various dissipation schemes have been introduced 
to stabilize the results. To circumvent this problem we could modify the objective function to 
control the residual derivatives. Consider, for example, the following multi-objective optimization 
problem: minimize the modified functional 

where b is a small parameter, 0 < p 6 1 .  The effect of the additional term will be to control local 
non-linear instabilities associated with shock development where large changes in the residual 
occur. Note that minimizing the functional (14) can be interpreted as minimizing the weighted 
HI-norm of R. However, the form in (14) contains second derivatives of u, which implies that, for 
conformity, C'-elements are appropriate. Generally, for two- and three-dimensional problems, 
simpler elements are desirable. An alternative formulation based on (14) can be constructed using 
high-order elements in a Co-method. That is, instead of (14) the same goal can be achieved by 
defining 

where N is the number of elements and 

That is, the added functional is defined on the element interiors and, using for instance quadratic 
or cubic Co-elements, the contributions of the second derivatives in the element interiors can be 
calculated for (1 61. 
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3.2. Numerical results 

We now demonstrate the shock-capturing ability of the HI-LSFEM using the shock wave 
reflection problem in Section 2.2 (Problem 1). In the calculation, uniform 20 x 5 meshes with 
8-node isoparametric quadratic elements, 9-node biquadratic elements and 12-node isoparametric 
cubic elements are considered. The solution is integrated with a time step At = 0.5 until an 
essentially steady state is obtained. Pressure contours with the L2-method and the HI-method for 
this steady solution are given for comparison in Figures 4 7  for calculations with each high-order 
element type indicated above. For calculations with the L2-method there are a few small 
oscillations in the pressure solution, seen as ‘islands’ in the contour plots. These oscillations are 
suppressed without degrading solution accuracy by setting B to a small value. Results for 
B =  are shown in successive plots and confirm this behaviour. The results appear relatively 
insensitive to f i  (e.g. see Reference 12). 

Figures 5 and 6 show the pressure contours for the same problem at different time steps. When 
the number of time steps increases from 7 to 10, the results of the HI-method remain stable but 
those for the L2-method have more ‘islands’. Similar results are seen in Figure 7 for cubic 
elements, which do not appear to offer any advantage over quadratic elements since the accuracy 
is also controlled by the time increment At and the time integration is of low order, O ( A t ) .  In a 
time-accurate calculation with a sufficiently small time step, some benefit from very-high-degree 
elements may be possible, but the practicality of such an approach is arguable. The pressure 
contours for quadratic elements and smaller step size are shown in Figure 8. Comparing the 
contours in Figure 8 with those in Figure 1, it is observed that the shock is captured better by 
using quadratic elements than with linear elements and there is little smearing even though the 
grid is quite coarse. Hence quadratic elements are quite effective. 

a. L2 method 

b. H’ method 

Figure 4. Pressure contours for the wave reflection problem (5 x 20 8-node quadratic elements, At = 0.5, 8 time steps, 
2 x 2 Gaussian quadrature) 
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a. L’method 

b. H’ method 

Figure 5. Pressure contours for the wave reflection problem (5 x 20 9-node quadratic elements, At = 0.5, 7 time steps, 
3 x 3 Gaussian quadrature) 

a. t2 method 

b. H’ mcthod 

Figure 6. Pressure contours for the wave reflection problem (5 x 20 8-node quadratic elements, Af = 0.5, 10 time steps, 
3 x 3 Gaussian quadrature) 
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a. L* method 

b. H' method 

Figure 7. Pressure contours for the wave reflection problem (5 x 20 12-node cubic elements, At = 0.5, 8 time steps, 
3 x 3 Gaussian quadrature) 

Figure 8. Pressure contours for the wave reflection problem (H'-method, B = 10 x 30 8-node quadratic elements, 
At = 0.333 33, 14 time steps) 

4. AN APPROXIMATE 'CONSERVATIVE' FORM 

4.1. Formulation 

The LSFEM described in Section 2 is based on a non-conservative formulation. Here we would 
like to construct a conservative LSFEM (in the sense of the steady state). The Euler equations 
governing two-dimensional compressible inviscid flows can be written in conservative form as 

dq d F  dG 
- + - + - = O  i n Q x ( O , T ) ,  
at ax d y  

Mq = g 

q = qo 

on Ts x (0, T) 

in Q for t = 0, 
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in which e is the total energy and for the case of a perfect gas the equation of state is 

p = ( y  - 1)[e - +p(u' + u ' ) ] .  (21) 
Retaining the conservative variables, as an intermediate step we first convert ( 1  7) (temporarily) to 
the following non-conservative form: 

- aq - aq - +  A , -  + A,- aY = 0, ax at 

where 

r 0 1 0 0 1  

in which 

- UU U u 0 '  ? I  +?(U' + u') - u2 ( 3  - y)u - y u  

0 0 1 
- UU u U 

+y(u' + 0' )  - u2 -yu ( 3  - y)u 
A 2 =  [ 

[ r ( u 2  + u ' )  - ye ]u  -yuu i -- yo2 yu 

Using the same procedure as before, we construct a corresponding least-squares weak 
statement similar to (27) where the matrix operators in (23), (24) are again evaluated at the 
previous time level. This implies that an approximate conservative form can be reconstructed. 
Using the relationships 

(25) 
a c n  - a q  
a Y  aY 
-- 

a ~ "  - aqn 
- A:-, - - = A : x '  ax 

we have then a conservative least-squares weak statement: find AqES = ((H'(R))4; M(Aq) 5 0 
on r,} such that 

Here Aq is the unknown increment in conservative variables for time step Ar. We may use the 
conservative variables at the previous time step to calculate the nodal values of components of 
flux F" and G" and then use a finite element approximation to calculate dF"/dx and dG"/dy. 
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Figure 9. Pressure contours for the wave reflection problem (conservative method, 20 x 60 bilinear elements, 
At = 0333 33, 14 time steps) 

4.2. Numerical results 

Numerical experiments were conducted with this conservative formulation on the previous 
shock wave reflection problem and the 20” ramp problem (Problems 1 and 2). The pressure 
contours for the wave reflection problem are shown in Figure 9. It is observed that there is little 
difference between the results of non-conservative and conservative LSFEM, except that the 
results of the conservative method have slight oscillations. The same qualitative comparison also 
held for the ramp problem. 

5. CONCLUSIONS 

These exploratory calculations indicate that the method is capable of approximating the shocked 
flow solution quite well without oscillation or excessive dissipation despite the coarse grid. The 
L2-method with linear elements is robust but the shock is somewhat smeared. The H’-method 
with quadratic elements has good resolution but includes an added small parameter that must be 
specified to control shock instabilities. Although the scheme is implicit, the successful use of a 
large time step and the symmetry of the matrix prove effective for steady state calculations and 
hence the efficiency is reasonable. Continuing research will be directed towards exploring the 
limitations of the method and improving its efficiency, as well as the scaling of terms in the 
objective function. 
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